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More Undecidability Results



  

The Halting Problem

● The most famous undecidable problem is the halting 
problem, which asks:

Given a TM M and a string w,
will M halt*  when run on w? 

● As a formal language, this problem would be expressed as

HALT = { ⟨M, w⟩ | M is a TM that halts on w } 
● How hard is this problem to solve?

* i.e., accept or reject (“halting” execution, as opposed to 
infinite loop)



  

HALT ∈ RE

● Claim: HALT ∈ RE.
● Idea: If you were certain that a TM M halted on a 

string w, could you convince me of that?
● Yes – just run M on w and see what happens!

bool checkHalt(TM M, string w) {
   // This might infinite loop, and if it does, we will
   // not reach the "if" code below this

bool result = M(w);
 
   // whether result is true or false, at least M did halt, 
   // so we return true
   if (result || !result) { 
      return true;
   }
}

bool checkHalt(TM M, string w) {
   // This might infinite loop, and if it does, we will
   // not reach the "if" code below this

bool result = M(w);
 
   // whether result is true or false, at least M did halt, 
   // so we return true
   if (result || !result) { 
      return true;
   }
}



  

HALT and A
TM

● Comparing recognizer TMs for HALT and ATM 

bool checkHalt(TM M, string w) {
   // This might infinite loop

bool result = M(w);
 
   // Accept both true and false
   if (result || !result) { 
      return true;
   }
}

bool checkHalt(TM M, string w) {
   // This might infinite loop

bool result = M(w);
 
   // Accept both true and false
   if (result || !result) { 
      return true;
   }
}

bool checkATM(TM M, string w) {
   // This might infinite loop

bool result = M(w);
 
   // Accept only true
   if (result) { 
      return true;
   } else {
      return false;
   } 
}

bool checkATM(TM M, string w) {
   // This might infinite loop

bool result = M(w);
 
   // Accept only true
   if (result) { 
      return true;
   } else {
      return false;
   } 
}



  



  

HALT ∉ R

● Claim: HALT ∉ R.
● If HALT is decidable, there would 

exist some decider function

  bool willHalt(TM M, string w)

that reports whether the program M 
will halt when run on the given input 
w.

● Then, we could do the same trickster 
setup we saw for ATM...

bool trickster(string input) {
string me = mySource();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

return true;
}

}

bool trickster(string input) {
string me = mySource();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

return true;
}

}



  

Theorem: HALT ∉ R.

Proof: By contradiction; assume that HALT ∈ R. Then there’s a decider
D for HALT, which we can represent in software as a method willHalt
that takes as input the source code of a program and an input, then
returns true if the program halts on the input and false otherwise.

Given this, we could then construct this program Trickster:

●

●

●

●

●

●  

Choose any string w and trace through the execution of program Trickster on 
input w, focusing on the answer given back by the willHalt method. If 
willHalt(me, input) returns true, then Trickster must halt on its input w. 
However, in this case Trickster proceeds to loop infinitely on w. Otherwise, if 
willHalt(me, input) returns false, then Trickster must not halt its input w. 
However, in this case Trickster proceeds to accept its input w.

In both cases we reach a contradiction, so our assumption must have been 
wrong. Therefore, HALT ∉ R. ■

bool trickster(string input) {
string me = mySource();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

return true;
}

}

bool trickster(string input) {
string me = mySource();
if (willHalt(me, input)) {

while (true) {
// loop infinitely

}
} else {

return true;
}

}



  

Regular
Languages CFLs

All Languages

R RE

ATM

HALT



  

The Class RE

● Languages L that are in RE, but not R, are 
those where:
● We can build a TM M, where (ℒ M) = L
● That TM M has the risk of getting stuck in an 

infinite loop for at least some input string(s)
– But by definition of (ℒ M), only input strings 

that are not in L are at risk of looping in M
● Just like the class Regular was defined in 

multiple ways (DFAs, NFAs, RegExes), today 
we’ll learn another way to define this class RE! 



  

Get ready to answer 
some questions in rapid-fire style! 

(only about 4 seconds per question)

Get ready to answer 
some questions in rapid-fire style! 

(only about 4 seconds per question)



  

Definition:

A k-Clique is a set of k vertices of a graph 
that are all adjacent to each other (all 

possible edges between those k vertices 
are present in the graph). 

has a 4-Clique: does not have a 4-Clique 
(has a 3-Clique though):



  

QUICK REACTION: Does this graph contain a 4-clique?QUICK REACTION: Does this graph contain a 4-clique?



  

Reflection:

Hm, that was kind of hard to assess in just 
4 seconds! What if I select and highlight 

just some of the nodes for you, would that 
be a helpful hint?



  

WITH A “HINT”(?): Does this graph contain a 4-clique?WITH A “HINT”(?): Does this graph contain a 4-clique?



  

WITH A “HINT”(?): Does this graph contain a 4-clique?WITH A “HINT”(?): Does this graph contain a 4-clique?

Reflection:

That was a 
terrible so-

called “hint”!     
It didn’t make the 

problem any 
easier to solve. :-( 



  

WITH A NEW HINT: Does this graph contain a 4-clique?WITH A NEW HINT: Does this graph contain a 4-clique?



  

Reflection:

The hint format (highlight some subset of 
4 nodes) was a good format, but the hint 

contents are only really helpful if they are 
the correct subset.



  

Discussion Question:

We found an effective, concise hint format 
for proving that a graph has a 4-Clique. 

What about for proving a graph does not 
have a 4-Clique? What would an effective, 

concise hint format for that look like? 



  

Reflection:

Highlighting some subset of 4 nodes is not 
a good “hint” format for proving a given 

graph does not have a 4-clique. And in fact, 
there isn’t any concise (we’ll define that more 

rigorously in a second) format that would 
work for that. It’s inherently hard to prove 

a negative.



  

Key intuition behind our next way of 
defining RE:

A language L is in RE if, for any string w, if 
you know that w ∈ L, then there is some 

piece of evidence (a “hint”) you could 
provide to make the problem of checking 

the fact that w ∈ L very easy. 

(But it may not be similarly feasible to present 
some “hint” that makes the problem of checking 

that w ∈ L very easy.) 



  

Remarks on our Graph Clique example

The problem of saying whether a given 
Graph contains a 4-clique is in R. You 
may be able to solve it faster with a hint 

(which makes it a fun illustration of the principle of 
“hints” to use in class), but a TM can do it in 

finite time without a hint.
 

For the purposes of deciding whether a 
language is RE, speed doesn’t really 
matter, as long as the time is finite.

What that does mean is that the hint has to 
be finite size, and “finite” is our 

definition of “concise” hint.



  

More examples of
helpful hints

vs 
unhelpful hints



  

Verification

/* imagine 5000 lines of TM code */

Does this code HALT on input 
“abbababababbbb”?



  

Verification

/* imagine 5000 lines of TM code */

Does this code HALT on input 
“abbababababbbb”?

Reflection:

We know that we are 
not able to answer 
this in the general 
case without the 

possibility of looping 
(HALT in RE, not R). 

Is there a finite-
length “hint” format 
we could use to help 

us decide this?



  

Verification

/* imagine 5000 lines of TM code */

Does this code HALT on input 
“abbababababbbb”?

Reflection:

We know that we are 
not able to answer 
this in the general 
case without the 

possibility of looping 
(HALT in RE, not R). 
And in particular, if 
you try to solve it by 
just running the TM 

on the input as a test, 
it might infinite loop. 

Is there a finite-length 
“hint” format we could 
use to help us decide 

this?

Stay with the idea of trying to solve this by running 
the TM on the input as a test. For input strings 

that do HALT in this TM, what hint could 
help us do that safely (no infinite loop)? 

Stay with the idea of trying to solve this by running 
the TM on the input as a test. For input strings 

that do HALT in this TM, what hint could 
help us do that safely (no infinite loop)? 



  

Verification

/* imagine 5000 lines of TM code */

Does this code HALT on input 
“abbababababbbb”?

Plan:

Use a hint format of 
“the number of steps 

to run the TM to 
observe it halting on 

this input string.”
We will run that many 

steps and if we see 
halting, great!

* finite-length
* there is a clear hint 
we can provide for all 

⟨M, w⟩ strings in 
HALT

Stay with the idea of trying to solve this by running 
the TM on the input as a test. For input strings 

that do HALT in this TM, what hint could 
help us do that safely (no infinite loop)? 

Stay with the idea of trying to solve this by running 
the TM on the input as a test. For input strings 

that do HALT in this TM, what hint could 
help us do that safely (no infinite loop)? 



  

Verification

/* imagine 5000 lines of TM code */

Does this code HALT on input 
“abbababababbbb”?

Example:

Someone gives us 
the number of steps 

hint “20.” We run 
the TM on the input 
“abbababababbbb” 
and observe the TM 
accepts the input on 

step 20. 

This ⟨M, w⟩ is in the 
language HALT.



  

Verification

/* imagine 5000 lines of TM code */

Does this code HALT on input 
“abbababababbbb”?

Example:

Someone gives us 
the number of steps 

hint “20.” We run 
the TM on the input 
“abbababababbbb” 
and observe the TM 
rejects the input on 

step 15. 

This ⟨M, w⟩ is in the 
language HALT.



  

Verification

/* imagine 5000 lines of TM code */

Does this code HALT on input 
“abbababababbbb”?

Example:

Someone gives us 
the number of steps 

hint “20.” We run 
the TM on the input 
“abbababababbbb” 
and observe the TM 
has neither accepted 

nor rejected the 
input after 20 steps 

(still running). 

Is this ⟨M, w⟩ in the 
language HALT?Is this ⟨M, w⟩ in the 

language HALT?

Is this ⟨M, w⟩ in the 
language HALT?



  

Verification

● In each of the preceding cases, we were given some 
problem and some evidence supporting the claim that 
the answer is “yes.”

● Given correct/helpful evidence, we can quickly see 
that the answer is indeed “yes.”

● Given incorrect/unhelpful evidence, we aren't 
immediately sure whether the answer is “yes.”
● Maybe there's no evidence saying that the answer is “yes,” 

because the answer is no!
● Or maybe there is some evidence, but just not the evidence 

we were given.
● Let's formalize this idea.



  

Verifiers

● A verifier for a language L is a TM V with the 
following properties:
● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L  ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● A string c where V accepts ⟨w, c⟩ is called a 

certificate for w.
● This is the “evidence.”

● Intuitively, what does this mean?



  

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

input string (w)

certificate (c)

input string (w)

“Solve the problem”

“Check the answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩ 

M halts on all inputs.
w ∈ L ↔ M accepts w 

If M accepts, then 
w ∈ L.

If M accepts, then 
w ∈ L.

If M rejects, then 
w ∉ L.

If M rejects, then 
w ∉ L.

If V accepts ⟨w, c⟩, 
then w ∈ L.

If V accepts ⟨w, c⟩, 
then w ∈ L.

If V rejects ⟨w, c⟩, 
we don't know 
whether w ∈ L.

If V rejects ⟨w, c⟩, 
we don't know 
whether w ∈ L.



  

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

input string (w)

certificate (c)

input string (w)

“Solve the problem”

“Check the answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩ 

M halts on all inputs.
w ∈ L ↔ M accepts w 

If M accepts, then 
w ∈ L.

If M accepts, then 
w ∈ L.

If M rejects, then 
w ∉ L.

If M rejects, then 
w ∉ L.

If V accepts ⟨w, c⟩, 
then w ∈ L.

If V accepts ⟨w, c⟩, 
then w ∈ L.

If V rejects ⟨w, c⟩, 
we don't know 
whether w ∈ L.

If V rejects ⟨w, c⟩, 
we don't know 
whether w ∈ L.

“certificate” is the 
official term for a 

“hint”

“certificate” is the 
official term for a 

“hint”



  

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

input string (w)

 Helpful certificate (c)

input string (w)

“Solve the problem”

“Check the answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩ 

M halts on all inputs.
w ∈ L ↔ M accepts w 

If M accepts, then 
w ∈ L.

If M accepts, then 
w ∈ L.

If M rejects, then 
w ∉ L.

If M rejects, then 
w ∉ L.

If V accepts ⟨w, c⟩, 
then w ∈ L.

If V accepts ⟨w, c⟩, 
then w ∈ L.

If V rejects ⟨w, c⟩, 
we don't know 
whether w ∈ L.

If V rejects ⟨w, c⟩, 
we don't know 
whether w ∈ L.



  

Deciders and Verifiers

Decider M
for L

Verifier V
for L

yes!

no!

yes!

not
sure

input string (w)

Unhelpful certificate (c)

input string (w)

“Solve the problem”

“Check the answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩ 

M halts on all inputs.
w ∈ L ↔ M accepts w 

If M accepts, then 
w ∈ L.

If M accepts, then 
w ∈ L.

If M rejects, then 
w ∉ L.

If M rejects, then 
w ∉ L.

If V accepts ⟨w, c⟩, 
then w ∈ L.

If V accepts ⟨w, c⟩, 
then w ∈ L.

If V rejects ⟨w, c⟩, 
we don't know 
whether w ∈ L.

If V rejects ⟨w, c⟩, 
we don't know 
whether w ∈ L.



  

Verifiers
● A verifier for a language L is a TM V with the 

following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L.

● If V does not accept ⟨w, c⟩, then either
– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.



  

Verifiers
● A verifier for a language L is a TM V with the 

following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● More notes about V:

● Notice that c is existentially quantified. 
● Notice V is required to halt always (like a 

decider).



  

Verifiers
● A verifier for a language L is a TM V with the 

following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● More notes about V:

● Notice that (ℒ V) ≠ L. (Good question to hold on 
to for a second: what is (ℒ V)?)

● The job of V is just to check certificates, not to 
decide membership in L.



  

Verifiers
● A verifier for a language L is a TM V with the 

following properties:

● V halts on all inputs.
● For any string w ∈ Σ*, the following is true:

w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● A note about c:

● Figuring out what would make a good certificate 
(should it be a number of steps to take, an 
equation-solving variable assignment, a set of 
graph nodes, an array of numbers to fill in a 
whole Sudoku board?) is custom work to do for 
each different language L.



  

Some Verifiers

● Let L be the following language:

    L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
                     terminates for n }

  

 

bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}

bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}



  

Some Verifiers

● Let L be the following language:

    L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
                     terminates for n }

  

 

bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}

bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}

Does this always halt?Does this always halt?



  

Some Verifiers

● Let L be the following language:

    L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
                     terminates for n }

  

 

bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}

bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}

For one given ⟨n⟩ ∈ L (say 11), how many different values 
of c will work to cause the verifier to accept?

For one given ⟨n⟩ ∈ L (say 11), how many different values 
of c will work to cause the verifier to accept?



  

Some Verifiers

● Let L be the following language:

    L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
                     terminates for n }

  

 

bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}

bool checkHailstone(int n, int c) {
    for (int i = 0; i < c; i++) {
        if (n % 2 == 0) n /= 2;
        else n = 3*n + 1;
        if (n == 1) return true;
    }
    return n == 1;
}

How many of these statements are true of (ℒ V)?
● ℒ(V) = L
● ℒ(V) ⊆ L
● L ⊆ (ℒ V)

How many of these statements are true of (ℒ V)?
● ℒ(V) = L
● ℒ(V) ⊆ L
● L ⊆ (ℒ V)



  

Where We’ve Been

NFA Regex

State Elimination

Thompson’s Algorithm



  

Where We’re Going Today

Verifier Recognizer

Somehow build this

Somehow build this



  

Verifier for ATM?

● Consider ATM:

  ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● This is our standard example of an undecidable 
language. There’s no way, in general, to tell 
whether a TM M will accept a string w.

● Although this language is undecidable, it’s an 
RE language, and it’s possible to build a 
verifier for it!



  

Verifier for ATM?

● Consider ATM:

  ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● This is a canonical example of an undecidable 
language. There’s no way, in general, to tell 
whether a TM M will accept a string w.

● Although this language is undecidable, it’s an 
RE language, and it’s possible to build a 
verifier for it!

What would make a good certificate for 
a verifier for ATM?

What would make a good certificate for 
a verifier for ATM?



  

A Verifier for ATM 
● Recall ATM = { ⟨M, w⟩ | M is a TM and M accepts w}

  

 

● Do you see why M accepts w iff there is some c 
such that checkWillAccept(M, w, c) returns true?

● Do you see why checkWillAccept always halts?

bool checkWillAccept(TM M, string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
       simulate the next step of M running on w;
    }
    return whether M is in an accepting state;
}

bool checkWillAccept(TM M, string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
       simulate the next step of M running on w;
    }
    return whether M is in an accepting state;
}



  

Equivalence of Verifiers and 
Recognizers

Verifier Recognizer

Enforce a step count



  

What languages are verifiable?



  

Let V be a verifier for a language L. Consider the following
function given in pseudocode:

bool mysteryFunction(string w) {
    int i = 0;
    while (true) {
        for (each string c of length i) {
             if (V accepts ⟨w, c ) ⟩ return true;
        }
        i++;
    }
}

What set of strings does mysteryFunction return true on?

Let V be a verifier for a language L. Consider the following
function given in pseudocode:

bool mysteryFunction(string w) {
    int i = 0;
    while (true) {
        for (each string c of length i) {
             if (V accepts ⟨w, c ) ⟩ return true;
        }
        i++;
    }
}

What set of strings does mysteryFunction return true on?



  

Equivalence of Verifiers and 
Recognizers

Verifier Recognizer

Try all certificates

Enforce a step count



  

Theorem: If L is a language, then there is 
a verifier for L if and only if L ∈ RE.



  

● Theorem: If there is a verifier V for a language 
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L, 
find a way to construct a recognizer M for L.

Verifiers and RE



  

● Theorem: If there is a verifier V for a language 
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L, 
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE



  

● Theorem: If there is a verifier V for a language 
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L, 
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

ε a b aa ab ba bb aaa aab aba abb baa …

Verifiers and RE

We will try all possible certificates (values of c)



  

● Theorem: If there is a verifier V for a language 
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L, 
find a way to construct a recognizer M for L.

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

ε a b aa ab ba bb aaa aab aba abb baa …

Verifiers and RE

We will try all possible certificates (values of c)



  

● Theorem: If there is a verifier V for a language 
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L, 
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

We will try all possible certificates (values of c)



  

● Theorem: If there is a verifier V for a language 
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L, 
find a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifier V
for L

yes!

not
sure

input string (w)

certificate (c)

“Check the answer”

Verifiers and RE

We will try all possible certificates (values of c)



  

● Theorem: If there is a verifier V for a language 
L, then L ∈ RE.

● Proof goal: Given a verifier V for a language L, 
find a way to construct a recognizer M for L.
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Verifiers and RE

● Theorem: If V is a verifier for L, then L ∈ RE.
● Proof sketch: Consider the following program:

  

 

 

If w ∈ L, there is some c ∈ Σ* where V accepts ⟨w, c⟩. 
The function isInL tries all possible strings as 
certificate, so it will eventually find c (or some other 
certificate), see V accept ⟨w, c⟩, then return true. 
Conversely, if isInL(w) returns true, then there was 
some string c such that V accepted ⟨w, c⟩, so w ∈ L. ■

bool isInL(string w) {
   int i = 0;
   while (true) {
      for (each string c of length i) {
          if (V accepts w, c ) ⟨ ⟩ return true;
      }
      i++;
   }
}

bool isInL(string w) {
   int i = 0;
   while (true) {
      for (each string c of length i) {
          if (V accepts w, c ) ⟨ ⟩ return true;
      }
      i++;
   }
}



  

Verifiers and RE

● Theorem: If L ∈ RE, then there is a verifier for L.
● Proof goal: Beginning with a recognizer M for 

the language L, show how to construct a verifier 
V for L.

● The challenges:
● A recognizer M is not required to halt on all inputs. A 

verifier V must always halt.
● A recognizer M takes in one single input. A verifier V 

takes in two inputs.
● We’ll need to find a way of reconciling these 

requirements.



  

Recall: If M is a recognizer for a language 
L, then M accepts w iff w ∈ L.

Key insight: If M accepts a string w, it 
always does so in a finite number of steps.

Idea: Adapt the verifier for A    into a more 
general construction that turns any 

recognizer into a verifier by running it for a 
fixed number of steps.

TM



  

Verifiers and RE

● Theorem: If L ∈ RE, then there is a verifier for L.
● Proof sketch: Consider the following program:

  

 

 

Notice that checkIsInL always halts, since each step takes 
only finite time to complete. Next, notice that if there is a c 
where checkIsInL(w, c) returns true, then M accepted w 
after running for c steps, so w ∈ L. Conversely, if w ∈ L, then 
M accepts w after some number of steps (call that number 
c). Then checkIsInL(w, c) will run M on w for c steps, 
watch M accept w, then return true. ■

 bool checkIsInL(string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
        simulate the next step of M running on W;
    }
    return whether M is in an accepting state;
 }

 bool checkIsInL(string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
        simulate the next step of M running on W;
    }
    return whether M is in an accepting state;
 }



  

RE and Proofs

● Verifiers and recognizers give two different 
perspectives on the “proof” intuition for RE.

● Verifiers are explicitly built to check proofs that 
strings are in the language.
● If you know that some string w belongs to the 

language and you have the proof of it, you can 
convince someone else that w ∈ L.

● You can think of a recognizer as a device that 
“searches” for a proof that w ∈ L.
● If it finds it, great!
● If not, it might loop forever.



  

RE and Proofs

● If the RE languages represent languages 
where membership can be proven, what 
does a non-RE language look like?

● Intuitively, a language is not in RE if 
there is no general way to prove that a 
given string w ∈ L actually belongs to L.

● In other words, even if you knew that a 
string was in the language, you may 
never be able to convince anyone of it!
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