The Class RE

Regular
Languages

All Languages

More Undecidability Results

The Halting Problem

 The most famous undecidable problem is the halting
problem, which asks:

Given a TM M and a string w,
will M halt* when run on w?

« As a formal language, this problem would be expressed as
HALT = { (M, w) | M is a TM that halts on w }

« How hard is this problem to solve?

*1.e., accept or reject (“halting” execution, as opposed to
infinite loop)

HALT € RE

* Claim: HALT € RE.

» Idea: If you were certain that a TM M halted on a
string w, could you convince me of that?

* Yes - just run M on w and see what happens!

bool checkHalt(TM M, string w) {
// This might infinite loop, and if 1t does, we will
// not reach the "if" code below this
bool result = M(w);

// SO we return true

1if (result || !result) {
return true;
ks

}

// whether result 1s true or false, at least M did halt,

HALT and A_

« Comparing recognizer TMs for HALT and A,

bool checkHalt(TM M, string w) {

}

// This might infinite loop
bool result = M(w);

// Accept both true and false
1if (result || !result) {
return true;

¥

bool checkATM(TM M, string w) {
// This might infinite loop
bool result = M(w);

// Accept only true
1if (result) {
return true;
} else {
return false;

}
}

HALT ¢ R

* Claim: HALT ¢ R.

bool trickster(string input) {

o If HALT is decidable, there would string me = mySource();

exist some decider function if (willHalt(me, input)) {

. _ while (true) {
bool willHalt(TM M, string w) // loop infinitely

thgt reports whether the program M) e}ise /

will halt when run on the given input return true;

W. } }
 Then, we could do the same trickster

setup we saw for A.,,...

Theorem: HALT ¢ R.

Proof: By contradiction; assume that HALT € R. Then there’s a decider
D for HALT, which we can represent in software as a method willHalt

that takes as input the source code of a program and an input, then
returns true if the program halts on the input and false otherwise.

Given this, we could then construct this program Trickster:

bool trickster(string input) {
string me = mySource();
if (willHalt(me, input)) {
while (true) {
// loop infinitely
b

} else {
return true;
}

Choose any string w and trace through the execution of program Trickster on
input w, focusing on the answer given back by the willHalt method. If

willHalt(me, input) returns true, then Trickster must halt on its input w.

However, in this case Trickster proceeds to loop infinitely on w. Otherwise, if
willHalt(me, input) returns false, then Trickster must not halt its input w.

However, in this case Trickster proceeds to accept its input w.

In both cases we reach a contradiction, so our assumption must have been
wrong. Therefore, HALT ¢ R. &

Regular
Languages

HALT

All Languages

The Class RE

 Languages L that are in RE, but not R, are
those where:

e We can build a TM M, where ¥ (M) = L

 That TM M has the risk of getting stuck in an
infinite loop for at least some input string(s)

- But by definition of (M), only input strings
that are not in L are at risk of looping in M
» Just like the class Regular was defined in

multiple ways (DFAs, NFAs, RegExes), today
we’ll learn another way to define this class RE!

Get ready to answer
some questions in rapid-fire style!
(only about 4 seconds per question)

A k-Clique is a set of k vertices of a graph

Definition:

that are all adjacent to each other (all

possible edges between those k vertices

are present in the graph).

has a 4-Clique:

G1

does not have a 4-Clique

(has a 3-Clique though):

-clique?

4

this graph contain a

QUICK REACTION: Does

Reflection:

Hm, that was kind of hard to assess in just
4 seconds! What if I select and highlight
just some of the nodes for you, would that
be a helpful hint?

a 4-clique?

this graph contain

WITH A “HINT”(?): Does

Reflection:

That was a

terrible so-

called “hint”!

It didn’t make the
problem any

easler to solve. :-(

WITH A “HINT”(?): Does this graph contain a 4-clique?

a 4-clique?

WITH A NEW HINT: Does this graph contain

Reflection:

The hint format (highlight some subset of
4 nodes) was a good format, but the hint
contents are only really helptul if they are
the correct subset.

Discussion Question:

We found an effective, concise hint format
for proving that a graph has a 4-Clique.

What about for proving a graph does not
have a 4-Clique? What would an effective,
concise hint format for that look like?

Reflection:

Highlighting some subset of 4 nodes is not
a good “hint” format for proving a given
graph does not have a 4-clique. And in fact,
there isn’t any concise (we’ll define that more
rigorously in a second) format that would
work for that. It’s inherently hard to prove
a negative.

Key intuition behind our next way of
defining RE:

A language L is in RE if, for any string w, if
you know that w € L, then there is some
piece of evidence (a “hint”) you could
provide to make the problem of checking
the fact that w € L very easy.

(But it may not be similarly feasible to present
some “hint” that makes the problem of checking
that w £ L very easy.)

Remarks on our Graph Clique example

The problem of saying whether a given
Graph contains a 4-clique is in R. You

may be able to solve it faster with a hint
(which makes it a fun illustration of the principle of

“hints” to use in class), but a TM can do it in
finite time without a hint.

For the purposes of deciding whether a
language is RE, speed doesn’t really
matter, as long as the time is finite.

What that does mean is that the hint has to
be finite size, and “finite” is our
definition of “concise” hint.

More examples of
helpful hints
VS
unhelpful hints

Verification

/* imagine 5000 lines of TM code */

Does this code HALT on input
“abbababababbbb”?

Verification

/* imagine 5000 lines of TM code */

Does this code HALT on input
“abbababababbbb”?

Reflection:

We know that we are
not able to answer
this in the general

case without the
possibility of looping

(HALT in RE, not R).

Is there a finite-
length “hint” format
we could use to help

us decide this?

Verification

/* imagine 5000 lines of TM code */

Does this code HALT on input
“abbababababbbb”?

(

Stay with the idea of trying to solve this by running

the TM on the input as a test. For input strings
that do HALT in this TM, what hint could
help us do that safely (no infinite loop)?

\

Reflection:

We know that we are
not able to answer
this in the general

case without the
possibility of looping

(HALT in RE, not R).
And in particular, if

you try to solve it by

just running the TM
on the input as a test,
it might infinite loop.

Is there a finite-length

“hint” format we could

use to help us decide
this?

Verification

/* imagine 5000 lines of TM code */

Does this code HALT on input
“abbababababbbb”?

(

Stay with the idea of trying to solve this by running

the TM on the input as a test. For input strings
that do HALT in this TM, what hint could
help us do that safely (no infinite loop)?

\

Plan:

Use a hint format of
“the number of steps
to run the TM to
observe it halting on
this input string.”
We will run that many
steps and if we see
halting, great!

* finite-length
* there is a clear hint
we can provide for all
(M, w) strings in
HALT

Verification
Example:

Someone gives us
the number of steps
hint “20.” We run

* imag] 11 £ TM code * |
/* imagine 5000 lines o code */ the TM on the input

“abbababababbbb”

Does this code HALT on input and observe the TM

“abbababababbbb”? accepts the input on
step 20.

/,\, This (M, w) is in the
Q// language HALT.

Verification

/* imagine 5000 lines of TM code */

Does this code HALT on input
“abbababababbbb”?

/\

(v,

Example:

Someone gives us
the number of steps
hint “20.” We run
the TM on the input
“abbababababbbb”
and observe the TM
rejects the input on
step 15.

This (M, w) is in the
language HALT.

Verification

/* imagine 5000 lines of TM code */

Does this code HALT on input

“abbababababbbb”?

Is this (M, w) in the
language HALT?

ol

Example:

Someone gives us
the number of steps
hint “20.” We run
the TM on the input
“abbababababbbb”
and observe the TM
has neither accepted
nor rejected the
input after 20 steps
(still running).

Is this (M, w) in the
language HALT?

Verification

* In each of the preceding cases, we were given some
problem and some evidence supporting the claim that
the answer is “yes.”

* Given correct/helpful evidence, we can quickly see
that the answer is indeed “yes.”

e Given incorrect/unhelpful evidence, we aren't
immediately sure whether the answer is “yes.”

« Maybe there's no evidence saying that the answer is “yes,”
because the answer is no!

 Or maybe there is some evidence, but just not the evidence
we were given.

 Let's formalize this idea.

Verifiers

* A verifier for a language L is a TM V with the
following properties:

« V halts on all inputs.
 For any string w € X*, the following is true:
weL o 3dc € 2*. V accepts (w, c)

* A string ¢ where V accepts (w, c) is called a
certificate for w.

« This is the “evidence.”
 Intuitively, what does this mean?

Deciders and Verifiers

“Solve the problem”

a D
input string (w) Decider M

g for L

< 4

M halts on all inputs.
w € L & M accepts w

“Check the answer”
input string (W) [~ N

~ Verifier V
certificate (¢) for L

< 4

V halts on all inputs.
w € L o dc € 2*, V accepts (w, c)

If M accepts, then
w € L.

. If M rejects, then
wé L.

If V accepts (w, c),
thenw € L.

If V rejects (w, c),
we don't know
whether w € L.

Deciders and Verifiers

“Solve the problem”

a D
input string (w) Decider M

g for L

< 4

M halts on all inputs.
w € L & M accepts w

“Check the answer”
input string (w) [~ N

~ Verifier V
certificate (¢) for L

< 4

V halts on all inputs.
w € L o dc € 2*, V accepts (w, c)

If M accepts, then
w € L.

. If M rejects, then
wé L.

If V accepts (w, c),
thenw € L.

If V rejects (w, c),
we don't know
whether w € L.

“certificate” is the
official term for a
“hint”

Deciders and Verifiers

“Solve the problem”

If M accepts, then

a N < ‘ w € L. I
input string (w) Decider M
>
for L If M rejects, th
rejects, then I
< 4] weé L.

w € L & M accepts w

“Check the answer” Q//

If V accepts (w, c),
input string (w) [~ N ; b

N then w € L.
Verifier V —_—
Helpful certificate () for L If V rejects (w, c),
| / 4 ------- we don't know
whether w € L.

V halts on all inputs.
w € L o dc € 2*, V accepts (w, c)

Deciders and Verifiers

“Solve the problem”

a D
input string (w) Decider M
-

for L

< 4

M halts on all inputs.
w € L & M accepts w

“Check the answer”

input string (w) « D
~ Verifier V
Unhelpful certificate (0) for L
€ 4

V halts on all inputs.
w € L o dc € 2*, V accepts (w,

If M accepts, then
w € L.

. If M rejects, then
wé L.

If V accepts (w, c),
thenw € L.

If V rejects (w, c),
we don't know
whether w € L.

Verifiers

* A verifier for a language L is a TM V with the
following properties:

 V halts on all inputs.
 For any string w € 2%, the following is true:
weL o dc € X* Vaccepts (w, c)

 Some notes about V:
« If V accepts (w, c), then we're guaranteed w € L.

« If V does not accept (w, c), then either

- w € L, but you gave the wrong c, or
- w & L, so no possible ¢ will work.

Verifiers

* A verifier for a language L is a TM V with the
following properties:

 V halts on all inputs.
 For any string w € 2%, the following is true:
weL o dc € X* Vaccepts (w, c)

e More notes about V:

* Notice that c is existentially quantified.

* Notice V is required to halt always (like a
decider).

Verifiers

* A verifier for a language L is a TM V with the
following properties:

 V halts on all inputs.
 For any string w € 2%, the following is true:
weL o dc € X* Vaccepts (w, c)

e More notes about V:

* Notice that Z(V) # L. (Good question to hold on
to for a second: what is £ (V)?)

 The job of V' is just to check certificates, not to
decide membership in L.

Verifiers

* A verifier for a language L is a TM V with the
following properties:

 V halts on all inputs.
 For any string w € 2%, the following is true:
weL o dc € X* Vaccepts (w, c)

A note about c:

« Figuring out what would make a good certificate
(should it be a number of steps to take, an
equation-solving variable assignment, a set of
graph nodes, an array of numbers to fill in a
whole Sudoku board?) is custom work to do for
each different language L.

Some Verifiers

 Let L be the following language:

L =1 (n)| n € N and the hailstone sequence
terminates for n }

bool checkHailstone(int n, 1int c) {
for (int i = 0; i < c; i++) {
if (n % 2 == 0) n /= 2;
else n = 3*n + 1;
if (n == 1) return true;

}

return n == 1;

Some Verifiers

Does this always halt?

L =1 (n)| n € N and the hailstone sequence
terminates for n }

bool checkHailstone(int n, 1int c) {
for (int i = 0; i < c; i++) {
if (n % 2 == 0) n /= 2;
else n = 3*n + 1;
if (n == 1) return true;

}

return n == 1;

Some Verifiers

For one given (n) € L (say 11), how many different values
of ¢ will work to cause the verifier to accept?

L =1 (n)| n € N and the hailstone sequence
terminates for n }

bool checkHailstone(int n, 1int c) {
for (int i = 0; i < c; i++) {
if (n % 2 == 0) n /= 2;
else n = 3*n + 1;
if (n == 1) return true;

}

return n == 1,

How many of these statements are true of £(V)?
 Y(V) =1L
« (V) CL
L C A(V)

L = 1(n) | n € N and the hailstone sequence
terminates for n }

bool checkHailstone(int n, 1int c) {
for (int i = 0; i < c; i++) {
if (n % 2 == 0) n /= 2;
else n = 3*n + 1;
if (n == 1) return true;

}

return n == 1;

Where We’ve Been

State Elimination

NFA Regex

Thompson’s Algorithm

Where We're Going Today

Somehow build this

Verifier Recognizer

Somehow build this

Verifier for A ?

« Consider Apy:
Ay ={ (M, w)| MisaTM and M accepts w }.

» This is our standard example of an undecidable
language. There’s no way, in general, to tell
whether a TM M will accept a string w.

« Although this language is undecidable, it’s an
RE language, and it’s possible to build a
verifier for it!

What would make a good certificate for
a verifier for A ?

\

« Consider Apy:
Ay ={ (M, w)| MisaTM and M accepts w }.

* This is a canonical example of an undecidable
language. There’s no way, in general, to tell
whether a TM M will accept a string w.

« Although this language is undecidable, it’s an
RE language, and it’s possible to build a
verifier for it!

A Verifier for A,

« Recall Ay ={ (M, w) | MisaTM and M accepts w}

bool checkWillAccept(TM M, string w, int c) {
set up a simulation of M running on w;

for (int i = 0; i < c; i++) {
simulate the next step of M running on w;

}

return whether M 1s 1n an accepting state;

* Do you see why M accepts w iff there is some ¢
such that checkwillAccept (M, w, c) returns true?

Do you see why checkwillAccept always halts?

Equivalence of Verifiers and
Recognizers

Recognizer

Enforce a step count

What languages are verifiable?

/Let V be a verifier for a language L. Consider the following\
function given in pseudocode:

bool mysteryFunction(string w) {
int i = 0;
while (true) {
for (each string c of length 1) {
if (V accepts (w, c¢)) return true;

}

i++;

}

\What set of strings does mysteryFunction return true on?y

Equivalence of Verifiers and
Recognizers

Try all certificates

Verifier Recognizer

Enforce a step count

Theorem: It L is a language, then there is
a verifier for L if and only if . € RE.

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.
“Check the answer”

input string (w) N

~ Verifier V
certificate (c) | for L

TE e

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) \
~ Verifier V
certificate (c) | for L

TR Ne

We will try all possible certificates (values of c)

‘e\ a b aa ab ba bb| |aaa |aab |aba [abb |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) \
~ Verifier V
certificate (c) | for L
< 4

We will try all possible certificates (values of c)

‘e\ a b aa ab ba bb| |aaa |aab |aba [abb |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) £ Y
~ Verifier V
certificate (c) - for L

g

We will try all possible certificates (values of c)

S ‘a\ b aa ab ba bb| |aaa |aab |aba [abb |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) £ Y
~ Verifier V
certificate (c) - for L
< >

We will try all possible certificates (values of c)

S ‘a\ b aa ab ba bb| |aaa |aab |aba [abb |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) £ Y
~ Verifier V
certificate (c) - for L

g

We will try all possible certificates (values of c)

S a ‘b\ aa ab ba bb| |aaa |aab |aba [abb |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) £ Y
~ Verifier V
certificate (c) - for L
< >

We will try all possible certificates (values of c)

S a ‘b\ aa ab ba bb| |aaa |aab |aba [abb |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) £ Y
~ Verifier V
certificate (c) - for L

g

We will try all possible certificates (values of c)

S a b ‘aa\ ab ba bb| |aaa |aab |aba [abb |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) £ Y
~ Verifier V
certificate (c) - for L
< >

We will try all possible certificates (values of c)

S a b ‘aa\ ab ba bb| |aaa |aab |aba [abb |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) £ Y
~ Verifier V
certificate (c) - for L

g

We will try all possible certificates (values of c)

S a b aa ‘ab\ ba bb| |aaa |aab |aba [abb |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,

find a way to construct a recognizer]\A/I for L.

“Check the answer” b
input string (w) N

~ Verifier V
certificate (c) | for L

< 4

We will try all possible certificates (values of c)

S a b aa ‘ab\ ba bb| |aaa |aab |aba [abb |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) £ D

~ Verifier V
certificate (c) - for L

" e

S a b aa ab ba bb| |aaa |aab |aba [abb |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) N
~ Verifier V
certificate (c) - for L

" e

We will try all possible certificates (values of c)

‘e\ a b aa ab ba bb| |aaa |aab |aba [abb |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) N
~ Verifier V
certificate (c) - for L
& 4

We will try all possible certificates (values of c)

‘e\ a b aa ab ba bb| |aaa |aab |aba [abb |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) N
~ Verifier V
certificate (c) - for L
& 4

We will try all possible certificates (values of c)

S ‘a\ b aa ab ba bb| |aaa |aab |aba [abb |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) N
~ Verifier V
certificate (c) - for L
& 4

We will try all possible certificates (values of c)

S a ‘b\ aa ab ba bb| |aaa |aab |aba [abb |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) N
~ Verifier V
certificate (c) - for L
& 4

We will try all possible certificates (values of c)

S a b ‘aa\ ab ba bb| |aaa |aab |aba [abb |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) N
~ Verifier V
certificate (c) - for L
& 4

We will try all possible certificates (values of c)

S a b aa ‘ab\ ba bb| |aaa |aab |aba [abb |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) N
~ Verifier V
certificate (c) - for L
& 4

We will try all possible certificates (values of c)

S a b aa ab ‘ba\ bb| |aaa |aab |aba [abb |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) N
~ Verifier V
certificate (c) - for L
& 4

We will try all possible certificates (values of c)

S a b aa ab ba ‘bb\ aaa |(aab |aba |[abbh |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) N
~ Verifier V
certificate (c) - for L
& 4

We will try all possible certificates (values of c)

‘aa; aabh [abd |abh |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) £ D

~ Verifier V
certificate (c) - for L

< 4

We will try all possible certificates (values of c)

S a b aa ab ba bb| |aaa aba |[abbh |baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) N
~ Verifier V
certificate (c) - for L
& 4

We will try all possible certificates (values of c)

S a b aa ab ba bb| |aaa [aab ‘ab; abh |[baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) N
~ Verifier V
certificate (c) - for L
& 4

We will try all possible certificates (values of c)

S a b aa ab ba bb| |aaa |[aab |aba ‘aba baa

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) £ D

~ Verifier V
certificate (c) - for L

< 4

We will try all possible certificates (values of c)

S a b aa ab ba bb| |aaa |[aab |aba [abb

Verifiers and RE

« Theorem: If there is a verifier V for a language
L, then L € RE.

 Proof goal: Given a verifier V for a language L,
find a way to construct a recognizer M for L.

“Check the answer”

input string (w) N
~ Verifier V
certificate (c) - for L
& 4

We will try all possible certificates (values of c)

S a b aa ab ba bb| |aaa |aab |aba [abb |baa

Verifiers and RE

e Theorem: If V is a verifier for L, then L € RE.

* Proof sketch: Consider the following program:

bool isInL(string w) {
int i = 0;
while (true) {
for (each string c of length i) {
if (V accepts (w, c)) return true;

If w € L, there is some ¢ € X* where V accepts (w, c).
The function isInL tries all possible strings as
certificate, so it will eventually find ¢ (or some other
certificate), see V accept (w, c), then return true.
Conversely, if isInL(w) returns true, then there was
some string ¢ such that V accepted (w, c), sow € L. R

Verifiers and RE

e Theorem: If L. € RE, then there is a verifier for L.

* Proof goal: Beginning with a recognizer M for
the language L, show how to construct a verifier
V for L.

 The challenges:

* A recognizer M is not required to halt on all inputs. A
verifier V must always halt.

* A recognizer M takes in one single input. A verifier V
takes in two inputs.

« We’ll need to find a way of reconciling these
requirements.

Recall: It M is a recognizer for a language
L, then M accepts wiff w € L.

Key insight: It M accepts a string w, it
always does so in a finite number of steps.

Idea: Adapt the verifier for Ay into a more
general construction that turns any
recognizer into a verifier by running it for a
fixed number of steps.

Verifiers and RE

e Theorem: If L € RE, then there is a verifier for L.
* Proof sketch: Consider the following program:

bool checkIsInL(string w, int c) {
set up a simulation of M running on w;
for (int 1 = 0; i < c; i++) {
simulate the next step of M running on W;

}

return whether M is 1n an accepting state;

Notice that checkIsInL always halts, since each step takes
only finite time to complete. Next, notice that if there is a ¢
where checkIsInL(w, c) returns true, then M accepted w

after running for ¢ steps, so w € L. Conversely, if w € L, then
M accepts w after some number of steps (call that number
c). Then checkIsInL(w, c) will run M on w for c steps,

watch M accept w, then return true. B

RE and Proofs

» Verifiers and recognizers give two different
perspectives on the “prootf” intuition for RE.

» Verifiers are explicitly built to check proofs that
strings are in the language.

 If you know that some string w belongs to the
language and you have the proof of it, you can
convince someone else that w € L.

* You can think of a recognizer as a device that
“searches” for a proof that w € L.

 If it finds it, great!
 If not, it might loop forever.

RE and Proofs

 If the RE languages represent languages
where membership can be proven, what
does a non-RE language look like?

* Intuitively, a language is not in RE if
there is no general way to prove that a
given string w € L actually belongs to L.

* In other words, even if you knew that a
string was in the language, you may
never be able to convince anyone of it!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

